skip to main content


Search for: All records

Creators/Authors contains: "Valtchanov, I"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT We present Herschel–PACS spectroscopy of four main-sequence star-forming galaxies at z ∼ 1.5. We detect [OI]63 μm line emission in BzK-21000 at z = 1.5213, and measure a line luminosity, $L_{\rm [O\, {\small I}]63\, \mu m} = (3.9\pm 0.7)\times 10^9$ L⊙. Our PDR modelling of the interstellar medium in BzK-21000 suggests a UV radiation field strength, G ∼ 320G0, and gas density, n ∼ 1800 cm−3, consistent with previous LVG modelling of the molecular CO line excitation. The other three targets in our sample are individually undetected in these data, and we perform a spectral stacking analysis which yields a detection of their average emission and an [O i]63 μm line luminosity, $L_{\rm [O\, {\small I}]63\, \mu m} = (1.1\pm 0.2)\times 10^9$ L⊙. We find that the implied luminosity ratio, $L_{\rm [O\, {\small I}]63\, \mu m}/L_{\rm IR}$, of the undetected BzK-selected star-forming galaxies broadly agrees with that of low-redshift star-forming galaxies, while BzK-21000 has a similar ratio to that of a dusty star-forming galaxy at z ∼ 6. The high [O i]63 μm line luminosities observed in BzK-21000 and the z ∼ 1−3 dusty and sub-mm luminous star-forming galaxies may be associated with extended reservoirs of low density, cool neutral gas. 
    more » « less
  2. ABSTRACT We measure the 850-μm source densities of 46 candidate protoclusters selected from the Planck high-z catalogue (PHz) and the Planck Catalogue of Compact Sources (PCCS) that were followed up with Herschel-SPIRE and SCUBA-2. This paper aims to search for overdensities of 850-μm sources in order to select the fields that are most likely to be genuine protoclusters. Of the 46 candidate protoclusters, 25 have significant overdensities (>5 times the field counts), 11 have intermediate overdensities (3–5 times the field counts), and 10 have no overdensity (<3 times the field counts) of 850-μm sources. We find that the enhanced number densities are unlikely to be the result of sample variance. Compared with the number counts of another sample selected from Planck’s compact source catalogues, this [PHz + PCCS]-selected sample has a higher fraction of candidate protoclusters with significant overdensities, though both samples show overdensities of 850-μm sources above intermediate level. Based on the estimated star formation rate densities (SFRDs), we suggest that both samples can efficiently select protoclusters with starbursting galaxies near the redshift at which the global field SFRD peaks (2 < z < 3). Based on the confirmation of overdensities found here, future follow-up observations on other PHz targets may greatly increase the number of genuine dusty star-forming galaxy-rich clusters/protoclusters. 
    more » « less
  3. ABSTRACT

    We present SCUBA-2 850 $\mathrm{ \mu}$m observations of 13 candidate starbursting protoclusters selected using Planck and Herschel data. The cumulative number counts of the 850 $\mathrm{ \mu}$m sources in 9 of 13 of these candidate protoclusters show significant overdensities compared to the field, with the probability <10−2 assuming the sources are randomly distributed in the sky. Using the 250, 350, 500, and 850 $\mathrm{ \mu}$m flux densities, we estimate the photometric redshifts of individual SCUBA-2 sources by fitting spectral energy distribution templates with an MCMC method. The photometric redshift distribution, peaking at 2 < z < 3, is consistent with that of known z > 2 protoclusters and the peak of the cosmic star formation rate density (SFRD). We find that the 850 $\mathrm{ \mu}$m sources in our candidate protoclusters have infrared luminosities of $L_{\mathrm{IR}}\gtrsim 10^{12}\, \mathrm{L}_{\odot }$ and star formation rates of SFR  = (500–1500) M⊙ yr−1. By comparing with results in the literature considering only Herschel photometry, we conclude that our 13 candidate protoclusters can be categorized into four groups: six of them being high-redshift starbursting protoclusters, one being a lower redshift cluster or protocluster, three being protoclusters that contain lensed dusty star-forming galaxies or are rich in 850 $\mathrm{ \mu}$m sources, and three regions without significant Herschel or SCUBA-2 source overdensities. The total SFRs of the candidate protoclusters are found to be comparable or higher than those of known protoclusters, suggesting our sample contains some of the most extreme protocluster population. We infer that cross-matching Planck and Herschel data is a robust method for selecting candidate protoclusters with overdensities of 850 $\mathrm{ \mu}$m sources.

     
    more » « less